Contact Information
Four Oaks House, 160 Lichfield Rd
Sutton Coldfield, West Midlands
B74 2TZ, UK
+44(0)1676 530 730 | +44(0)121 2273 335
Latest Tweets
Quintic_Sports
Be Part Of The Quintic Community…

Screening of an Elite Triple Jumper

Q4E Case Study 5 – Screening of an Elite Triple Jumper

Proposed Subject usage:

Coaches, Podiatry, Physiotherapy, Strength and Conditioning
Sports Science (1st /2nd and 3rd year)

Objective

  • To show how Quintic video analysis and RSscan pressure plate can be used within an in season fitness screening assessment.
  • To calculate the peak forces, loading rates and weight profile during a back squat.
  • To identify any possible injuries due to leg dominance, asymmetry or potential high loading rates.

Introduction

Force

A body’s state of being in rest (stationary) or in motion can be changed by the action of another body. The action exerted by this body that causes the change is termed a force.

Therefore a body in motion can accelerate, decelerate or have the path of motion altered by the force another body exerts on it. Alternatively a body at rest can be made to move when an external force is placed upon it.

Force is measured in Newton’s (N). A force of 1N is the force that will produce an acceleration of 1ms-2 in a body of 1Kg mass.

Force (N) = Mass (Kg) x Acceleration (ms-2)

Rate of Force Development

Strength work has been shown to improve performance particularly for sprinters, and jumpers but it is not beneficial in developing rate of force – the speed with which force is achieved. For example it takes around 400 ms to develop maximum force during a squat exercise, but the foot-ground contact time in during the sprint phase of a triple jump is around 90 ms. Therefore if an athlete cannot generate force quickly, they cannot continue to accelerate down the runway.

Rate of Force Development (Nms-1)= Force exerted (N) / Time (S)

 

Method

Video footage was taken at 50hz, along with RSscan data at 100Hz. The video has been calibrated and digitised, Raw data collected from the 1 metre RsScan plate has been exported into excel, pressure distribution peak force and loading rates have been calculated. (See spreadsheets below). Still images have been exported from the video to illustrate the athlete’s body position at key points.

Quintic software functions used:

  • Digitisation module
  • Calibration
  • Export Analysis
  • Interactive graph and data displays
  • Export data
  • Image capture
  • Quintic and RSscan Synchronisation

Results

Bodyweight 71.6Kg (702.4N)
Peak Force (PF): 4309N, (6.13 Body Weights (BW))
PF occurs at frame: Quintic: 117, RsScan: 37
Peak Rate of Force Development (PRFD) occurs at frame: Quintic: 101, RsScan: 21
PRFD:4800Ns-1
Rate of Force Development (RFD) @ PF: 2300Ns-1
Elapsed time between PRFD and RFD @ PF: 0.32s
Left/Right Force Distribution at PF: 41% / 59%
Toes/Heels Force Distribution at PF: 57% / 43%
Knee angle at PF: 251/109º
Angular velocity of the knee at PF: 153.8º/s

80Kg Bar

Screen 1
Peak Force:  4309N
Screen 2
Peak Rate of force development: 4800Ns-1
Screening of Athletes | Quintic Sports